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We show that a logical extension of the piecewise optimal linearization proce- 
dure leads to the Gaussian decoupling scheme, where no iteration is required. 
The scheme is equivalent to solving a few coupled equations. The method is 
applied to models which represent (a) a single steady state, (b) passage from an 
initial unstable state to a final preferred stable state by virtue of a finite 
displacement from the unstable state, and (c) a bivariate case of passage from an 
unstable state to a final stable state. The results are shown to be in very good 
agreement with the Monte Carlo calculations carried out for these cases. The 
method should be of much  value in multidimensional cases. 
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1. INTRODUCTION 

Nonlinear stochastic differential equations arise in modeling of many 
physical processes. (1'2~ Generally, these equations are not amenable to 
closed form solutions. Perforce one has to resort to approximate proce- 
dures. The only exception is the Monte Carlo technique, which is numeri- 
cally exact. But the Monte Carlo method is not attractive since it is 
computationally expensive. 

Many of the approximate procedures devised are based on the concept 
of linearization. One such method is the statistical (or equivalent) lineariza- 
tion procedure. (~-6~ In this technique the nonlinear equation is replaced by 
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a linear one in such a way that the ensemble average of the square of the 
error due to the replacement is minimum. (3) Recently Eaves and Rein- 
hardt (7) suggested a modification wherein the linearization was carried out 
piecewise at different time intervals. The solution of the linearized equation 
in a given time interval was used to average the square of the error. These 
authors applied the piecewise optimal linearization (POL) procedure to a 
Langevin equation with one steady state which is stable and showed that its 
performance is much better than the statistical linearization procedure. 
None of these procedures are applicable to cases where the passage is from 
an unstable state to stable states. 

There are a class of problems where the passage from an unstable state 
can be either restricted to a single steady state (by an appropriate choice of 
initial conditions) or the inherent nature of the problem allows only one 
steady state. In such situations both the first and second moments would be 
of interest. In the case when the driving noise is Gaussian, we show that a 
logical extension of the POL procedure gives a Gaussian decoupling 
scheme. This scheme is uniformly good for all times. The simplicity of the 
method lies in the few coupled equations one has to solve (two in the case 
of a single variable and five in the case of two variables). The method 
appears to be very useful whenever the interest is restricted to the first two 
moments. (In most cases of physical interest this should be adequate,) The 
method should be of much value in multidimensional cases when the 
Monte Carlo technique becomes prohibitive. The method also throws light 
on situations where there are multiple steady states. 

We consider models which represent (a) a single steady state, (b) 
passage from an initial unstable state to a preferred stable state by virtue of 
a finite displacement from the unstable state, and (c) passage from an 
unstable state to a single stable state. The first two are single-variable cases 
and the last is a two-variable case. We also briefly examine the passage 
from an unstable state to multiple steady states studied by Suzuki. (a'9) For 
comparison of the accuracy of the suggested decoupling scheme, in each of 
the examples considered we have also performed the Monte Carlo calcula- 
tion. 

The plan of the paper is as follows: In Section 2, we outline the 
statistical linearization and the POL. We show how this procedure naturally 
leads to the Gaussian decoupling scheme for a driving Gaussian white 
noise. The example considered is the overdamped Bernoulli oscillator 
(allowing for both signs in the linear term). We consider both the stable and 
unstable cases. Comparison with the Monte Carlo results demonstrates that 
in both (a) and (b) cases, the time dependence of the first two moments is 
predicted very well. A Gaussian bimodal choice for the decoupling indi- 
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cates why Suzuki's self-consistent method works. In Section 3, we consider 
a two-variable Langevin equation which has relevance in a plastic flow 
situation. (1~ A bivariate Gaussian distribution is used to decouple the 
system of equations. Again it is demonstrated that the results of the first 
two moments agree very well with the Monte Carlo results. Section 4 is 
devoted to discussion. For the bivariate Langevin equation we have shown 
the equivalence of the POL procedure and the Gaussian decoupling 
scheme. This has been outlined in the Appendix. 

2. STATISTICAL LINEARIZATION AND PIECEWISE OPTIMAL 
LINEARIZATION 

In this section we discuss a model described by the equation 

dx + Bx + g,x 3 = (1) 
dt 

which represents an overdamped Bernoulli oscillator. ~(t) is a Gaussian 
white noise with 

(~/(t)) = 0 and Q/(t)Tt(t')) = 2ed(t - t') (2) 

where 2e is the strength of the random force. 3 g is always positive to ensure 
global stability. If fl > 0, x = 0 is the only steady state which is stable. If 
fl < 0, there are three steady states x = 0, ++_(~,/g)1/2 where ~, = - f t .  The 
steady state x = 0 is unstable. In the following we investigate the case 
fl > 0 and also the case fl < 0 but with the initial point displaced by a 
value much larger than e 1/2 so that the system preferentially evolves to one 
of the stable steady states. There are many physical situations where a finite 
displacement is of interest due to the inherent nature of the problem. (For 
example the initial value of the dislocation density in a plastic flow problem 
is finite. See for instance Ref. 10.) 

The statistical linearization procedure (3 6) consists in approximating 
the nonlinear Eq. (1) to the linear one given by 

d x ( O  + x(0 = (3) 
dt 

The error committed due to this replacement is 

A ( X )  = ( fl -- f l  )X + gX 3 (4) 

fi in Eqs. (3) and (4) is determined by demanding that the ensemble 

3 In physical examples, the value of ~ is of the order of the inverse of the size of the system. 
See Refs. 8 and 9. 
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average of the square of the error be minimum, i.e., 

0 (zX2(x)> = 0 (5) 

The bracket ( > in Eq. (5) represents the average over the equilibrium 
distribution under the assumption that A 2 is ergodic. When the equilibrium 
distribution is not known, the average in Eq. (5) is replaced ~4) by an 
average over the approximate equilibrium distribution obtained as a solu- 
tion of the linearized Eq. (3). 

Recently Eaves and Reinhardt (7) suggested a modification of the 
above linearization. The time is partitioned into a set of intervals each of 
arbitrary length. In the j th  interval Eq. (1) is approximated as 

d x ( 0  
dt -t-~j.x(t) -1- Cj = T~(t), ~-1 < t < 5 (6) 

The error due to replacement of Eq. (1) by Eq. (6) is 

~j(x) = (/3 - ;~ )x - Cj + gx 3 iV) 

The parameters/~ and Cj are determined by demanding that 

= = 0 (s) 

The bracket ( >5 represents the average taken using the probability density 
function at time t = ~. The expression for/~ and Cy are given by 

~.= ~ -'l- g[ <X4>~- <X3>~<X>~]/O2(~) (9) 

and 

Cx = g[ (x2>~<x3>;j - (x>~.<x4>~]/e2(t)). (10) 

It may be pointed out that the above equations reproduce the exact rate 
equations for the first two moments obtained by starting from Eq. (1) with 
(x(t)~(t)> taken as e to the leading order. Since Eqs. (9) and (10) contain 
up to four moments, there appears to be a need to calculate equations for 
moments up to the fourth one. However, ~/(t) is Gaussian and therefore 
equations for the first two moments are sufficient. Propagation formulas for 
these can be easily obtained from Eq. (6). These authors impose the 
self-consistency condition to obtain /~ and Cj iteratively. However, since 
the solution of Eq. (6) is a Gaussian,/~ and Cj are given by 

~. = fi + 3g(x2>9 (11) 

and 

= - 2g(x)~ (12) 
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In deriving these equations, we have made use of the fact that 

(x3)(, = 3(x)5(x2)f  - 2(x)~ (13) 

and 

(X4) t  = 3(X2)~ -- 2(X)~ (14) 

It is obvious now that once we decide to use the solution of the linearized 
Eq. (6) for calculating/~ and Cj, we can drop the subscript and regard/}" 
and C as continuous functions of time. (This is equivalent to At]. = 5 - 9-1 

0.) This permits a decoupling scheme where equations for the first two 
moments are sufficient. Using the expressions for fi and C we get 

dx( t )  + [ fi + 3g (x2 ( t ) ) ]x ( t )  _ 2 g ( x ( t ) )  3 = ~(t) (15) 
dt 

where (x2(t)) should be evaluated self consistently, i.e., 

d -dr ( x ( t ) )  + f i ( x ( t ) )  + 3 g ( x ( t ) ) ( x 2 ( t ) )  - 2 g ( x ( t ) )  3 = 0 (16) 

d d-t (x2(t))  + 2f l (x2( t ) )  + 6g(x:( t ) )2  - 2g (x ( t ) )4  = 2e (17) 

In obtaining Eq. (17) we have made use of the fact that (x(t)Tl(t))  is e 
[using the linear Equation (15)]. We could have obtained the above equa- 
tions starting from the equations for the first two moments [obtained from 
Eq. (1)] and using the relations connecting the third and fourth moments to 
the first two. [Of course we have to use also the fact that (x(t)~t(t))  is e to 
the leading order.] 

For the sake of computation we chose/3 = g = 1. It is clear that the 
system will relax asymptotically to the only steady state x = 0. We chose 
c = 5 • 10 -7, (x(0)) ----- 2 and (x2(0)) = 4 (i.e., deterministic initial condi- 
tions). 

We have used fourth-order Runge-Kutta-Gil l  method to solve Eqs. 
(16) and (17). For the purpose of comparison we have also solved Eq. (1) 
using Monte Carlo method coupled with Runge-Kutta-Gil l  method. 4900 
histories were generated and the convergence of the first two moments with 
increasing number of histories were explicitly tested. We have used POL 
procedure also as prescribed by Eaves and Reinhardt. (7) Needless to say, 
the POL procedure takes very much larger computer time by virtue of the 
iterations involved. Numerical solution of our equations for this problem 
takes approximately 3 sec for a relative accuracy of 1 • 10 -8. In contrast, 
the POL procedure takes approximately 10 min for a relative error of 
1X 10 -3 in /~. and Cj (with 2x 5. = 0.001). Our results cannot be distin- 
guished from the results of POL procedure. Apart from these three, we 
have also solved the problem with statistical linearization procedure 
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wherein we use the asymptotic solution of the linearized Eq. (3) to obtain 
self-consistently the time-independent coefficient fi (as suggested in Ref. 4). 
Figure 1 depicts the results on the first moment obtained by various 
methods. We see that the results of our decoupling scheme agree very well 
with the Monte Carlo results. The statistical linearization predicts a slower 
decay to the steady state compared to the exact Monte Carlo results. Figure 
2 depicts the variance as a function of time. Again our results are in very 
good agreement with the Monte Carlo results. The results of the statistical 
linearization procedure deviate from the Monte Carlo results at the initial 
time considerably, but as t ~ oe there is a better agreement as should be 
expected. 

Fig. 1. 
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6 2 4  V a l s a k u m a r  e t  a l .  

We now consider the unstable case fi = - 7. This models a system that 
relaxes from the initial unstable state to a final stable state. We consider 
here two situations. First, we study the evolution from an initial state which 
is displaced from x - - 0  by a value 8 such that # 2>> ~ so that the system 
evolves to the positive stable steady state preferentially. The situation 
corresponds to the extensive regime. (s'9) We have chosen ~x(0)) = 8 = 5 x 
10 -3 and ~ = 5 • 10 -v. Figure 3 depicts the evolution of the mean as 
obtained by the Gaussian decoupling scheme and the Monte Carlo tech- 
nique. Figure 4 depicts the evolution of the fluctuations. It  is clear that the 
results of the decoupling scheme agree quite well except for a small 
discrepancy of the fluctuations in the intermediate region. This discrepancy 
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between the two is due to the non-Gaussian feature. The fluctuation 
enhancement characteristic of passage from an (apparent) unstable state to 
a stable state is predicted remarkably well by the Gaussian approximation. 
It should be pointed out that this is in a sense the generalization of Suzuki's 
decoupling scheme for (x(0)) =/= 0. [Suzuki decouples x 3 =  (x2)x. His 
decoupling scheme is applicable only when ( x ( 0 ) ) =  0.] In the Monte 
Carlo calculations, 4900 tracks were generated and the convergence of the 
mean and the variance were explicitly verified. We have also carried out the 
POL procedure as prescribed by Eaves and Reinhardt (7~ and the results 
match exactly for A{/= 0.001 with an error constraint on/~  and Cj equal to 
0.1%. 

Next we consider the situation ( x ( 0 ) ) =  0. This corresponds to the 
relaxation from the intrinsic unstable region (8) (62<< ~). In this case both 
the steady states are equally probable. The problem has been studied by 
Suzuki in detail using scaling theory. (8'9) As an illustration of the scaling 
property, he proposes a decoupling scheme which gives a second moment 
equation very different from the corresponding one in the extensive region. 
The results of this self-constraint decoupling scheme can be easily found to 
compare well with the Monte Carlo resultsJ 12) Our interest here is to get 
some insight into why this decoupling scheme works. Here we will not be 
interested in comparing with the Suzuki scaling results. Our interest in the 
problem is to draw on the analysis of the problem and to suggest a 
decoupling procedure which will give reasonable results in the case when 
multiple steady states are allowed by any nonlinear Langevin equation. 

It is easy to show that the Eqs. (16) and (17) will not hold in this case 
due to the strong non-Gaussian feature. From the studies of the earlier two 
situations, it is clear that the Gaussian decoupling scheme works quite well 
since the probability density has only one peak. In this problem, since there 
are two peaks which asymptotically go to _+ (y/g)i/2, a bimodal distribu- 
tion would perhaps be a good choice. For the case of (x(0)) = 0, since the 
distribution function is to be symmetric, we chose 

P(x,t)= C(H(-x)exp[ (x + xO2 } + (x~x~)2]}2o~ (18) 

where 

C = 1/(2~r)l/2~r, 1 + erf (2ol)1/2 

Here H(x) is the usual Heaviside step function, x I is the position of the 
peak, and al 2 is the variance as defined for one part of the distribution. 
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Substituting for (X 4) in 

d (x2)  = 217<x27_ g<x4) + e] 
d/ 

we get 

(19) 

[ 

d___dt ( x 2 )  = 2 { 7 ( x  2) - g ( x 2 )  2 + ~ - 2go~ 

•  02 _ C x l ( x 2 ) e x p (  - x~ 

Since ot 2 = (X2)s - (X)s 2 (where s refers to one segment) we expect it to be 
small except perhaps in the intermediate regions. Our Monte Carlo results 
show that o~ is small compared to the other terms. Hence, to the first 
approximation we get Suzuki's decoupling scheme. This suggests that it is 
important to respect the symmetry of the distribution function. 

3. THE BIVARIATE LANGEVIN EQUATION 

The purpose of this section is to extend the results to nonlinear 
coupled Langevin equations. For the purpose of illustration we chose a 
model which has a physical basis in plastic flow. (1~ Specifically, the model 
represents the yield drop phenomenon in materials like silicon. Elsewhere, 
we have used these coupled Langevin equations to calculate the physical 
properties during a yield drop. (11) The coupled set of equations is 

dx x 2 
dt - xy  - + "ql(t) (21) 

and 

dy _ bo _ blxZy + b2x3 + ~2(1 ) (22) 
dt 

where ~1 and "1~2 are taken to be Gaussian white noise with zero mean and 

(~i( t )~l j ( t ' ) )  = 2ei~08(t - t') (23) 

In the physical problem x is a dimensionless variable related to the square 
root of the dislocation density and y is related to the dimensionless stress. It 
is clear that there is only one stable steady state 4 given by x = y  
= [bo/(b I - b2)] 1/3. The constants b 0, b I , and b 2 are material parameters. 

4 Generally, there is no steady state permitted in a constant strain rate experiment. Since our 
interest is to look at the fluctuations, we have constructed a model to permit a stable steady 
state. 
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It is straightforward to construct the equations of motion for the first 
two moments. These are given by 

d_ <x> = <xy> - (x2> (24) 
dt 

d <y> ~- Do -- bl<X2~ > ..}_ b2<X3> (25) 
dt 

d <x2> ~_-2[<x2y> - <x3> + q ]  (26) 
dt 

d at <y2> = 2[bo(y > _ b,<x~2> + b2<x3y> + %] (27) 

and 

d <xy> ~- <xy2> - <x2~> -.{- bo<X > - bl<X3~> --I- b2<x4> (2g) 

In the above equations we have made use of the fact that 

<x~l > = e l ,  <yrl2 > = C 2 (29) 

<x,72> = 0 = <y~,> (30) 

which can be obtained in the linear approximation. To calculate these 
moments, we now express <x3>, <x4>, <x~y>, (xy2>, ( x 2 9 )  and ( x ~ >  in 
terms of the first two moments of each of the variables and the correlation 
coefficient using a bivariate Gaussian distribution. Since we are interested 
only in the first few moments, it is convenient to use the characteristic 
function, 

2 2 X(V,,u2) = exp[ i<X>Pl + i<Y>P2 -- 1 {O2V[ + O2P2 + 20120102~11J2} ] (31) 

where 

and 

Using 

o2 = <x 2 ) -  (x> 2 (31a) 

02 = <y2> _ <y>2 (31b) 

o,~ = <xy> - <x><y> (31c) 
010" 2 

(x.y,n5 = ( _ i )  m + n  a n+m av~avd" [x(v, ,p2)][~,=.~=o (32) 
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and 

( x3y )  = 3 ( x 2 ) ( x y )  - 2 ( x ) 3 ( y )  (33f) 
These now can be used in Eqs. (24) to (28) to solve the resulting five 
coupled equations. The results of ( y )  and 022 have been shown in Figs. 5 
and 6 respectively, along with the Monte Carlo results. The results reported 
are for b 0 = 1, b 1 = 2, b 2 = 1, q = E 2 = 5 X 10 -7, (X(0)) = 0.03, (xa(0)) 
= 0.0009, ( y ( 0 ) )  = 0, ( 9 ( 0 ) )  = 0, and (x(0)y(0))  = 0. The value of E l has 
been chosen to be of the order of inverse size of the system. (The maximum 
dislocation density is ~1014.) From these figures, it is clear that the 
decoupling scheme gives results on the first and second cumulants which 
are in excellent agreement with the Monte Carlo results. Results on ( x ) ,  
(x2),  and (xy) also agree very well. Again the expected fluctuation 
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Fig. 6. The variance ofy for the problem considered in Fig. 5, 
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enhancement is predicted correctly. In the Appendix we have shown that 
the POL procedure gives identical equations. From the Appendix it should 
be clear that the procedure via POL becomes more and more cumbersome 
in higher dimensions. 

4. DISCUSSION 

We have shown that a logical extension of the POL procedure leads to 
the Gaussian decoupling scheme. The method is simple and yields good 
results both in the stable and the unstable cases. The method also gives 
some insight into the unstable case when multiple steady states are possible. 
In such cases we see that if we respect the symmetry of the distribution 
function, it should give a reasonable decoupling scheme. We have shown 
that the method can be easily generalized to the bivariate case. The usual 
fluctuation enhancement that is expected during a passage from an unsta- 
ble state to a stable state is also properly reproduced. The agreement with 
Monte Carlo technique demonstrates that the decoupling scheme should be 
of great value in higher-dimensional problems (where the Monte Carlo 
method becomes prohibitive), particularly when the interest can be re- 
stricted to the first two moments. 

NOTE ADDED IN PROOF 

It should be noted that the bimodal Gaussian decoupling has been 
used earlier by Langer et al. (~3) in the context of spinodal decomposition. 
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APPENDIX 

Consider writing the equations (21) and (22) in the linearized forms 

ax (A.1) dt - a l x  + f l l Y  + C1 + ~1 

and 

dy _ ~ --~ •2Y .Jr- C 2.Jr- 712 
dt 

where the errors in the above linearization are given by 

e 1 = x y  - -  x 2 -  OllX - -  B 1 Y  - -  C1 

and 

e 2 = b o - b l X 2 ~  -t- b 2  x 3  - o~2x - B 2 Y  - C 2  

(A.2) 

(A.3) 

(A.4) 



Linearization of Nonlinear Langevin Equations 631 

Minimizing the average of the square of these errors, we get 

C 1 = <xy> - <x2> - Ogl<X > - /~I<Y> 

and 

with 

and 

C2 --'~ bo -- bl<X2y> "}- b2<x3> - og.2<x > - 1~2<y> 

OL1 1 ( O2Rl - 010201282] 

( f12)- a~o~(1-O22i ~a~R2 0la2P,2R,] 

(A.5) 

(A.6) 

(A.7) 

0[2 1 ( ~ -- ~176 ] (A.8) 
( f12 ) -- 0202(1--- 022) ~ 02R4 0102012R3] 

In the above expressions 

R l = (x2y> - <x3> - <X><Xy> + < X ) ( X  2) (1.9) 

R 2 = <xy2) - (x2y) + (y)<x2) - <y)<xy) (A.10) 

R 3 = bl[<X><X2~> - <x3~>] -~ b2[<x4> - <x><x3>] (A.II) 

and 

R 4 = b l [ ~ X ~ ) < y  ) - ~x~72>] --t- b2 [~x3y)  - ( x 3 ) ~ y ) ]  (A.12)  

Finally, since the above linearized equations imply a Gaussian process, the 
moments (x3>, (x4>, (x~v), (xy2>, (x~v2>, and (x~v> can be expressed in 
terms of the first two moments of each of the variables and the correlation 
coefficient. It is straightforward to check that when this is done, they yield 
rate equations identical to those we have used for the first two moments. 
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